Geographical survey to explore minerals & clays economic-industrial deposits in different geomorphological units in Al-Qadisiyah Governorate using digital processing of Landsat 7,8 and Sentinel-2 – Iraq


  • Ahmad Saied Yasien Al-Gurairy University of Al-Qadisiyah- College of Arts, Geography department
  • Rahman Rabat Al-Edami University of Al-Qadisiyah- College of Arts, Geography department



economic and industrial clays, band ratios, Arithmetic average of the bands, principal component analysis (PCA), Al-Qadisiyah Governorate, Remote Sensing, Iraq


The exploration of rock layers with economic mineralization by remote sensing is a very important tool at present. Multisensor satellite visual data is a quick and inexpensive tool for mapping areas of geomorphological change and rock units associated with economic deposits such as high calcium limestone, gypsum, mineral clays, and silicic sands, which is of great economic importance. Multiple sources of spectral data derived from different remote sensing devices can be used to obtain detailed maps of a variety of economic minerals that can be used in various construction industries such as cement, gypsum, bricks, thermostone blocks, and so on. In this research, Landsat-7, Landsat-8, and Sentinel-2 sensors were used to survey and prospect for lime, gypsum, dolomite, sand, rocks containing a high percentage of iron oxides and mineral clays in the two main geomorphological units of Al-Qadisiyah Governorate, namely the unit, The Mesopotamian plain and desert shelf unit that forms part of the southern Iraqi desert. To process satellite, remote sensing data sets, band ratio operations, Arithmetic average of the bands, and Principal Component Analysis (PCA) techniques have been adopted and implemented to produce predictive mineral maps for a region. the study.

The spatial distribution of carbonate minerals (lime and gypsum), sands, and mineral clays was determined, while no discoveries of dolomite or iron oxides were found in the target area. Metal predictive maps were created for the study area according to the results obtained.

The results indicate that spectral data from multi-sensor remote sensing satellite datasets can be widely used to create remote sensing-based predictive maps for the exploration of exposure rocks, which contain important minerals for construction and other important economic industries in most regions around the world.


Download data is not yet available.

Author Biographies

Ahmad Saied Yasien Al-Gurairy, University of Al-Qadisiyah- College of Arts, Geography department

Ph.D in Geography

Rahman Rabat Al-Edami, University of Al-Qadisiyah- College of Arts, Geography department

PhD Assistant Professor in Geography


آمال مدحت عبدالقادر و أرسلان أحمد الجاف, المعالجة الرقمية لمرئيات لاندسات لتعيين ترسبات الحديد و الأطيان في مواقع مختارة من الصحراء الغربية-العراق, (2009). المجلة العراقية للعلوم, المجلد 50 العدد 4, جامعة بغداد – العراق, ص 519 – 532. [Google Scholar]

جمهورية العُراق, الهياة العامة للمساحة, خارطة العراق الادارية بمقياس 1:1000000 , بغداد, العُراق لسنة 2009 .

جمهورية العُراق, الهيأة العامة للمساحة, خارطة محافظة القادسية الإدارية بمقياس 1:500000 , بغداد, 1997 .

جمهورية العُراق, وزارة الصناعة والمعادن, هيأة المسح الجيولوجي العراقية, تقرير قسم الإستثمار, 2017.

الغريري, احمد سعيد ياسين, الخصائص الجيومورفولوجية لنهر الفرات وفرعيه الرئيسين العطشان والسُبُل بين الشنافية والسماوة, رسالة ماجستير , كلية الآداب – جامعة بغداد, بغداد, العراق, 2000 للميلاد, ص162 [Google Scholar]

محمد عبد المحسن العزاوي, & أرسلان احمد الجاف, (2010). مكاملة نظم المعلومات الجغرافية مع مرئيات التحسس النائي لتحديد الشواهد المعدنية في منطقة حلبجة، شمال شرق العراق. Iraqi Bulletin of Geology and Mining, 6(1). ‏[IASJ]

Abdul-Qadir, A. M., & Al-Jaf, A. A. (2009). Digital processing of Landsat images to detect iron and kaolin deposits in selected sites in the Western Desert of Iraq. Iraqi J. Sci. (Baghdad Univ., Baghdad, Iraq), 50(4), 519-532. [Google Scholar] ‏

Al-Gurairy Ahmad S.Y., 2000. The Geomorphological Characteristics of the Stream of Euphrates River and Tow Branches Al-Atshan and Al-Sebil Between Al-Shannafia and Al-Samawa, College of Arts – University of Baghdad, Baghdad, Iraq, p.162. [Google Scholar]

Al-Mubarak, M.A. and Amin, R.M., 1983. Report on the regional geological mapping of the eastern part of the Western Desert and western part of the Southern Desert. GEOSURV, int. rep. no. 1380. [Google Scholar]

Bolouki, S. M., Ramazi, H. R., Maghsoudi, A., Beiranvand Pour, A., & Sohrabi, G. (2019). A remote sensing-based application of Bayesian networks for epithermal gold potential mapping in Ahar-Arasbaran Area, NW Iran. Remote Sensing, 12(1), 105.‏ [Google Scholar]

Clark, R. N., & Rencz, A. N. (1999). Spectroscopy of rocks and minerals, and principles of spectroscopy. Manual of remote sensing, 3(11), 3-58.‏ [Google Scholar]

Clark, R.N., Swayze, G.A., Gallagher, A., King, T.V.V. and Calvin, W.M., 1993. The U.S. Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3.0 microns. U.S. Geological Survey, Open File Report 93 – 592,, 1340pp. [Google Scholar]

Colby, J. D. (1991). Topographic normalization in rugged terrain. Photogrammetric Engineering and Remote Sensing, 57(5), 531-537.‏ [Google Scholar]

Crosta, A. P., De Souza Filho, C. R., Azevedo, F., & Brodie, C. (2003). Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote sensing, 24(21), 4233-4240.‏ [Google Scholar]

Crowley, J. K., Brickey, D. W., & Rowan, L. C. (1989). Airborne imaging spectrometer data of the Ruby Mountains, Montana: mineral discrimination using relative absorption band-depth images. Remote Sensing of Environment, 29(2), 121-134.‏ [Google Scholar]

Di Tommaso, I., & Rubinstein, N. (2007). Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geology Reviews, 32(1-2), 275-290.‏ [Google Scholar]

Hunt, G. R. (1977). Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, 42(3), 501-513.‏ [Google Scholar]

Hunt, G. R., & Ashley, R. P. (1979). Spectra of altered rocks in the visible and near infrared. Economic Geology, 74(7), 1613-1629.‏ [Google Scholar]

Jassim Rafa'a Z. and Al-Jiburi Buthaina S. Mohammed., 2009. STRATIGRAPHY of Iraqi Southern Desert, Iraqi Bull. Geol. Min. Special Issue, p. 53-76. [Google Scholar]

Khiry, M.A., 2007. Spectral Mixture Analysis for Monitoring and Mapping desertification processes in Semi-arid area in North Kordofan State, Sudan. Ph.D. Thesis, Univ. of Dresden, Germany, 126pp. [Google Scholar]

Lima, T. A., Beuchle, R., Langner, A., Grecchi, R. C., Griess, V. C., & Achard, F. (2019). Comparing Sentinel-2 MSI and Landsat 8 OLI imagery for monitoring selective logging in the Brazilian Amazon. Remote Sensing, 11(8), 961.‏ [Google Scholar]

Loughlin, W. P. (1991). Principal component analysis for alteration mapping. Photogrammetric Engineering and Remote Sensing, 57(9), 1163-1169.‏ [Google Scholar]

Mars, J. C., & Rowan, L. C. (2006). Regional mapping of phyllic-and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere, 2(3), 161-186.‏ [Google Scholar]

Mars, J. C., & Rowan, L. C. (2011). ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan. Geosphere, 7(1), 276-289.‏ [Google Scholar]

Ninomiya, Y., & Fu, B. (2019). Thermal infrared multispectral remote sensing of lithology and mineralogy based on spectral properties of materials. Ore Geology Reviews, 108, 54-72.‏ [Google Scholar]

Noori, L., Pour, A. B., Askari, G., Taghipour, N., Pradhan, B., Lee, C. W., & Honarmand, M. (2019). Comparison of different algorithms to map hydrothermal alteration zones using ASTER remote sensing data for polymetallic vein-type ore exploration: Toroud–Chahshirin Magmatic Belt (TCMB), North Iran. Remote Sensing, 11(5), 495.‏ [Google Scholar]

Ott, N., Kollersberger, T. and Tassara, A., 2006. GIS analyses and favorability mapping of optimized satellite data in northern Chile to improve exploration for copper mineral deposits. Geological Society of America Geosphere, Vol.2, No.4, p. 236 – 252. [Google Scholar]

Pour, A. B., & Hashim, M. (2012). The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore geology reviews, 44, 1-9.‏ [Google Scholar]

Pour, A. B., Park, Y., Park, T. Y. S., Hong, J. K., Hashim, M., Woo, J., & Ayoobi, I. (2018). Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica. Polar Science, 16, 23-46.‏ [Google Scholar]

Sekandari, M., Masoumi, I., Beiranvand Pour, A., M Muslim, A., Rahmani, O., Hashim, M., ... & Aminpour, S. M. (2020). Application of Landsat-8, Sentinel-2, ASTER and WorldView-3 spectral imagery for exploration of carbonate-hosted Pb-Zn deposits in the Central Iranian Terrane (CIT). Remote Sensing, 12(8), 1239. [Google Scholar]

Sheikhrahimi, A., Pour, A. B., Pradhan, B., & Zoheir, B. (2019). Mapping hydrothermal alteration zones and lineaments associated with orogenic gold mineralization using ASTER data: A case study from the Sanandaj-Sirjan Zone, Iran. Advances in Space Research, 63(10), 3315-3332.‏[Google Scholar]

Singh, A., & Harrison, A. (1985). Standardized principal components. International journal of remote sensing, 6(6), 883-896.‏ [Google Scholar]

Sissakian Varoujan K. and Mohammed Buthaina S., 2007. STRATIGRAPHY of Iraqi Western Desert, Iraqi Bull. Geol. Min. Special Issue, p. 51-124. [Google Scholar]

Sissakian, V.K., 2000. Geological Map of Iraq, 3rd edition, scale 1: 1 000 000, GEOSURV, Baghdad, Iraq. [Google Scholar]

Xu, Y., Meng, P., & Chen, J. (2019). Study on clues for gold prospecting in the Maizijing-Shulonggou area, Ningxia Hui autonomous region, China, using ALI, ASTER and WorldView-2 imagery. Journal of Visual Communication and Image Representation, 60, 192-205.‏ [Google Scholar]



How to Cite

Al-Gurairy, A. S. Y., & Al-Edami, R. R. (2023). Geographical survey to explore minerals & clays economic-industrial deposits in different geomorphological units in Al-Qadisiyah Governorate using digital processing of Landsat 7,8 and Sentinel-2 – Iraq. Al-Adab Journal, 1(144), 199–240.